液压马达控制回路

液压马达的控制回路有很多不同于液压缸的独特之处,例如它有力矩、功率、速度、制动等控制回路等,下面介绍几种液压马达控制的基本回路。

一、 并联回路

如下图是液压马达的并联回路。这种回路有利于各液压马达的独立旋转、停止和速度的调整;当一个液压马达停止或变速时,对另下个液压马达速度的影响不大。为了防止由于负荷引起转速上的差异,应采用调速阀,并设在进油管路上。提高系统压力可以增加液压马达的力矩。它适用于低速运动的系统,液压泵的压力可选低一些。

二、 串联回路

液压马达的串联回路。各液压马达只能同时旋转,不能独自运动。各液压马达由负荷引起的力矩有差别时,它的转速也不变。在几个液压马达中,排量大的转速低,排量小的转速高,排量相等时转速也相等。由于液压泵输出的流量没有分散,所以比较容易获得高速运动。但是液压力被分配到各液压马达,所以马达的输出力矩较低。

液压马达另一类型的串联回路。液压马达1、2能串联同时运动,也能单独旋转。泵输出的压力油经溢流阀7和4卸荷。两个马达同时旋转时滑阀6切换另一位置,切断油路,马达1、2的工作压力分别由溢流阀7、4调节,节流阀5可以调整马达2的运动速度。换向阀3左右切换,可以控制马达1的正反旋转,与马达2形成串联回路。当换向阀处于中间位置时,只有马达2旋转。当滑阀6恢复图示位置时,马达2停止运动,压力油经溢流阀7通入换向阀3,可供给马达1旋转。

三、 并—串联回路

当处于图示位置时,两个液压马达为并联。当换向阀3切换到另一位置时,两个马达串联。并联时可增大扭矩,串联时可以提高转速。

四、 梳形回路

每个马达可以单独运动,自由选择它们的转向。几个马达同时运动时形成串联回路,它一般适用于高速,低扭矩的液压装置中。

五、 恒力矩回路

1. 变量泵恒力矩回路

变量泵1是主泵,用于驱动液压马达旋转,泵2是小流量低压泵,主要供给控制压力油,使液动滑阀5换向。在图示工作位置时,泵1卸荷。当电磁换向阀4换向,使液动换向阀切换到另一位置时,切断了泵1的卸荷油路,使液压马达7的回油可经液动换向阀5流回油箱。此时马达旋转。溢流阀起制动作用。溢流阀3用于调整控制压力油的压力。当马达负载过大时,压力继电器发出信号使电磁阀4断电,变量泵1卸荷,马达停转。

2. 定量泵恒力矩回路

它能获得恒力矩,其结构简单,成本低,但它的效率较低。

六、 增力矩回路

如图是同轴运转的两个液压马达,一般情况下马达1工作,马达2空转。当负载过大,需增加输出力矩时,将滑阀3切换到另一位置,使马达2参加工作,增加力矩,但此时转速降低。

七、 恒功率回路

采用定量泵和变量马达组成的回路可以获得恒定的功率。当处于图示位置时,泵1卸荷,滑阀2切换到另一位置时,变量马达2旋转,溢流阀4用于调整系统压力。溢流阀5作为制动阀用。

八、 恒速回路

在一般回路中,由于油液的压缩性和泄漏等因素,常常使马达速度发生变化,采用如图所示回路可以获得稳定的工作速度。它的工作原理如下:当马达1转速变动时,与马达同轴旋转的辅助泵2输出的流量增加,使辅助泵与节流阀3之间的压力上升,此时将滑阀4打开,把输入马达1的压力油泄掉一部分,使马达的速度降低。马达速度变低时,滑阀4关闭,输入马达的流量增加,使马达速度加快。

九、 限速回路

采用如图所示回路,能保证马达不会因外力作用而超速旋转。当换向阀处于左端工作位置时,压力油通入马达,另外经控制油路打开顺序阀使马达回油经顺序阀流入油箱。当马达在负荷等外力作用下超速旋转时,系统压力降低,从而将顺序阀关闭,使马达的转速受限制。但此回路对马达反向旋转不能起限速作用。

十、 制动回路

马达旋转运动时,如果突然停止供油,由于惯性作用容易发生冲击,采用制动回路既可以使马达很快停止旋转,又不至于发生冲击。如恒功率回路中,溢流阀5作为制动阀用。当马达3的回油突然切断时,回油只能从溢流阀5流回油箱,由于它的调定压力使回油具有一定的压力,所以很快使马达停止运动。

下图中的溢流阀在回路中既能调整系统压力,又兼作制动阀。当换向阀处于最下端的工作位置时,溢流阀调整系统压力,马达旋转。当换向阀处于中间位置时,泵卸荷,马达的回油直接流回油箱,由于惯性作用继续滑行然后慢慢停止。如果换向阀切换到最上端的工作位置时泵卸荷,则马达的回油只能经溢流阀流回油箱,此时溢流阀发挥制动作用,立刻使马达停止旋转。


随便看看